
Lab 06 - Data Preprocessing I

Name: Dempsey Wade

Class: CSCI 349 - Intro to Data Mining

Semester: 2019SP

Instructor: Brian King

1) [P] Before you begin, print out your current working directory to understand where in your
file system Python thinks your script is running from

/Users/dempseywade/Desktop/gitRepo/BucknellDataScienceLabs

2) [P] Now, use pandas to read in your data file you downloaded above, which you should
have placed in your data directory. Call the data frame df_temps. Read in the entire dataset.

3) [P] Show the shape of your dataframe. it should be:

(8693, 13)

(8693, 13)

4) [P] Show the result of info(). It should look like the following:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8693 entries, 0 to 8692
Data columns (total 13 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 Date/Time (GMT) 8693 non-null object
 1 Number of Observations (n/a) 8693 non-null object
 2 Average Temp (F) 8687 non-null object
 3 Max Temp (F) 8687 non-null object
 4 Min Temp (F) 8687 non-null object
 5 Average Dewpoint Temp (F) 8687 non-null object
 6 1 Hour Precip (in) 1730 non-null object
 7 Max Wind Gust (mph) 1044 non-null object
 8 Average Relative Humidity (%) 8425 non-null object
 9 Average Wind Speed (mph) 8680 non-null object
 10 Average Station Pressure (mb) 8675 non-null object
 11 Average Wind Direction (deg) 8279 non-null object
 12 Max Wind Speed (mph) 8680 non-null object
dtypes: object(13)
memory usage: 883.0+ KB
None

5) [P] Read about the memory_usage() method of pandas data frames. Then, report the total
memory in bytes for each variable of df_temps. Also, report the total memory required for
the data frame. Set the parameter drop=True, to get the most accurate assessment of your
total memory usage.

6628506 bytes

6) [P, M] Report the current index. You have 8693 observations, but the index still goes from
0 to 9126. Why?

In [1]: import sys
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

In [2]: import os
print(os.getcwd())

In [3]: df_temps = pd.DataFrame(pd.read_csv('data/faa_hourly-KIPT_20180101-20181231.csv', skiprows = 16))
del df_temps["Unnamed: 13"]
df_temps.set_index(['Date/Time (GMT)'], inplace = True)
df_temps = df_temps.drop('Date/Time (GMT)')
df_temps.reset_index(level = 0, inplace = True)

In [4]: print(df_temps.shape)

In [5]: print(df_temps.info())

In [6]: df_temps.memory_usage(deep = True)
total = df_temps.memory_usage(deep = True).sum()
print(total, "bytes")

RangeIndex(start=0, stop=8693, step=1)

7) [P] Reindex your data, and show that the new index is indeed reset. (There are many ways
to do this. I suggest using reset_index(). There is no need to retain the original index, so
drop=True is fine.)

Done in number 2.

8) [P] I cannot emphasize this enough – you will get the most out of your data when you take
the time to set up the most accurate type for each variable. Currently, the type of every
variable is object. However, notice that in your raw data file, EVERY variable is a number
except the first variable, which is a date. Dates are COMMON in data, and it is important that
you represent dates as actual date types! We'll deal with that shortly.

Convert all numeric data to actual numeric data types. You'll need to look up how to do this.
(HINT: pd.to_numeric() is your friend.) Leave the NaN fields alone! The fact that they are
missing is IMPORTANT! And, leave the date/time variable in the first column alone.

You should output the shape of your data, and show info() to show every variable is a floating
point number

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8693 entries, 0 to 8692
Data columns (total 13 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 Date/Time (GMT) 8693 non-null object
 1 Number of Observations (n/a) 8693 non-null int64
 2 Average Temp (F) 8687 non-null float64
 3 Max Temp (F) 8687 non-null float64
 4 Min Temp (F) 8687 non-null float64
 5 Average Dewpoint Temp (F) 8687 non-null float64
 6 1 Hour Precip (in) 1730 non-null float64
 7 Max Wind Gust (mph) 1044 non-null float64
 8 Average Relative Humidity (%) 8425 non-null float64
 9 Average Wind Speed (mph) 8680 non-null float64
 10 Average Station Pressure (mb) 8675 non-null float64
 11 Average Wind Direction (deg) 8279 non-null float64
 12 Max Wind Speed (mph) 8680 non-null float64
dtypes: float64(11), int64(1), object(1)
memory usage: 883.0+ KB

9) [P] Show the current total memory usage after converting your data types? There should
be a substantial drop in your memory footprint! Report the percentage that your memory
was reduced.

1495324 bytes
Percentage reduced = 77.44101008583232 %

10) [P] Did you notice that to_numeric() has a parameter called downcast? Go back and read
about this parameter. By default, most of the time your integer types will be converted to a
64-bit integer, and floating point types will use double precision numbers. You can do even
better. Read about this parameter, and downcast your types accordingly. Report the
percentage that your memory was reduced from the previous step, as well as from your first.

In [7]: print(df_temps.index)
My solution to number 2 showes from 0 to 8693

In [8]: #df_temps['Date/Time (GMT)'] = pd.to_datetime(df_temps['Date/Time (GMT)'])
columns = df_temps.columns.drop('Date/Time (GMT)')
df_temps[columns] = df_temps[columns].apply(pd.to_numeric, errors = 'coerce')
df_temps.info()

In [9]: total2 = df_temps.memory_usage(deep = True).sum()
print(total2, "bytes")
print('Percentage reduced = ', (total-total2)/total*100, '%')

In [10]: columns = df_temps.columns.drop('Date/Time (GMT)')
df_temps[columns] = df_temps[columns].apply(pd.to_numeric, errors = 'coerce', downcast = 'float')
df_temps.info()
total3 = df_temps.memory_usage(deep = True).sum()
print()
print(total3, "Mb")
print('Percentage reduced from initial= ', (total-total3)/total*100, '%')
print('Percentage reduced from question 9 = ', (total2-total3)/total2*100, '%')

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8693 entries, 0 to 8692
Data columns (total 13 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 Date/Time (GMT) 8693 non-null object
 1 Number of Observations (n/a) 8693 non-null float32
 2 Average Temp (F) 8687 non-null float32
 3 Max Temp (F) 8687 non-null float32
 4 Min Temp (F) 8687 non-null float32
 5 Average Dewpoint Temp (F) 8687 non-null float32
 6 1 Hour Precip (in) 1730 non-null float32
 7 Max Wind Gust (mph) 1044 non-null float32
 8 Average Relative Humidity (%) 8425 non-null float32
 9 Average Wind Speed (mph) 8680 non-null float32
 10 Average Station Pressure (mb) 8675 non-null float32
 11 Average Wind Direction (deg) 8279 non-null float32
 12 Max Wind Speed (mph) 8680 non-null float32
dtypes: float32(12), object(1)
memory usage: 475.5+ KB

1078060 Mb
Percentage reduced from initial= 83.73600325623903 %
Percentage reduced from question 9 = 27.904587902019895 %

11) At this point, you should have good data to start working with (with the exception of the
date column. Verify it by outputting the results of describe(). Every variable should have its
basic stats reported.

Number of
Observations

(n/a)

Average
Temp (F)

Max Temp
(F)

Min Temp
(F)

Average
Dewpoint
Temp (F)

1 Hour
Precip (in)

Max Wind
Gust (mph)

Average
Relative

Humidity
(%)

Average
Wind Speed

(mph)

count 8693.000000 8687.000000 8687.000000 8687.000000 8687.000000 1730.000000 1044.000000 8425.000000 8680.000000 8

mean 1.399747 51.752987 51.847435 51.662914 41.679428 0.040006 23.856617 71.532364 6.033965

std 0.903275 19.336796 19.362728 19.315928 20.122921 0.088109 5.003509 19.806757 5.022885

min 1.000000 -2.900000 -2.900000 -2.900000 -11.000000 0.000000 16.100000 9.000000 0.000000

25% 1.000000 36.000000 36.000000 36.000000 25.000000 0.000000 20.700001 57.000000 1.750000

50% 1.000000 51.099998 51.099998 50.000000 42.099998 0.010000 23.000000 75.000000 5.800000

75% 1.000000 69.099998 69.099998 69.099998 60.099998 0.040000 26.500000 89.000000 9.200000 1

max 8.000000 96.099998 96.099998 96.099998 76.449997 1.480000 54.099998 100.000000 35.700001

Data Transformation with Dates

12) [M] What are the four primary classes in pandas for working with dates and times? What
is each used for?

Timestamps- for a particular moment in time

Timedelta- to reference an exact length of time, a duration

Period- to reference time between a specific begining and end point.

DateOffset- Shifts the date/time by a desired frequency spacing

13) [M] What is the name of the pandas function that is used to convert string objects or
other types to a Timestamp object?

pd.Timestamp

14) [P] Create a Timestamp object from the string "07/04/19", which is a date representing
July 4, 2019. Store the object as d1 and show it.

Timestamp('2019-07-04 00:00:00')

15) [P] Using d1 and string formatting capabilities, print the string "Today's date is Thursday,
July 4, 2019".

In [11]: df_temps.describe()
#df_temps['Date/Time (GMT)'] = pd.to_datetime(df_temps['Date/Time (GMT)'])

Out[11]:

In [12]: kobe = "07/04/19"
d1 = pd.Timestamp(kobe)
d1

Out[12]:

Today's date is Thursday, July 04, 2019

16) [P] Create another Timestamp object representing Sept 7, 2019 at 3pm, called d2. Report
it

Timestamp('2019-09-07 15:00:00')

17) [P] Subtract d2 – d1, and report the difference as the number of days and seconds
between these two. Also report the difference as total seconds. (NOTE: The difference
should be 65 days, 54000 seconds. Or 5670000 total seconds.)

Difference in days = 65
Difference in seconds = 54000
Total difference in seconds = 5670000

18) [P] Create a new Timestamp object from the string "2019-07-01 08�30pm", but, localize
the time stamp to represent the time in the US Eastern Time Zone. Store the result as d3 and
output it.

Timestamp('2019-07-01 20:30:00-0400', tz='US/Eastern')

19) [P] Show time represented by d3, but converted to the US / Pacific Time Zone. The time
reported should be three hours earlier than EST shown in the previous question.

20
17

20) [P] Create a Timestamp object representing right now, stored as ts_now. Report the
result.

Timestamp('2024-08-13 00:50:31.429154')

21) [P] Create a Timedelta object representing 1 hour, stored as td_hour. Report the result.

Timedelta('0 days 01:00:00')

22) [P] Demonstrate how you can do basic mathematical operations by adding 6 hours to
ts_now using td_hour and basic math operations. (i.e. No loops or further calculations
necessary!)

Timestamp('2024-08-13 06:50:31.429154')

23) [P] Create a DatetimeIndex object that represents every hour during the month of
January, 2019. The first index should be midnight, January 1, 2019, and the last index should
be January 31, 2019 at 11pm. Store the object as dr. (HINT – use the pd.date_range()
method!)

In [13]: d1.day
d1.month
print('Today\'s date is', d1.strftime('%A, %B %d, %Y'))

In [14]: kobe = "09/07/2019"
d2 = pd.Timestamp(kobe)
d2 = d2 + pd.DateOffset(hours = 15)
d2

Out[14]:

In [15]: print('Difference in days =', pd.Timedelta(d2-d1).days)
print('Difference in seconds =', pd.Timedelta(d2-d1).seconds)
print('Total difference in seconds =', pd.Timedelta(d2-d1).days*3600*24 + pd.Timedelta(d2-d1).seconds)

In [16]: kobe = "2019-07-01 08:30pm"
d3 = pd.Timestamp(kobe)
d3 = d3.tz_localize('US/Eastern')
d3

Out[16]:

In [17]: print(d3.hour)
d3 = d3.tz_convert('US/Pacific')
print(d3.hour)

In [18]: ts_now = pd.Timestamp.now()
ts_now

Out[18]:

In [19]: td_hour = pd.Timedelta(hours = 1)
td_hour

Out[19]:

In [20]: ts_now = ts_now + (6*td_hour)
ts_now

Out[20]:

In [21]: start = '2019-01-01 00:00am'
end = '2019-01-01 11:00pm'
dr = pd.date_range(start, end, freq = 'h')
print(dr)

DatetimeIndex(['2019-01-01 00:00:00', '2019-01-01 01:00:00',
 '2019-01-01 02:00:00', '2019-01-01 03:00:00',
 '2019-01-01 04:00:00', '2019-01-01 05:00:00',
 '2019-01-01 06:00:00', '2019-01-01 07:00:00',
 '2019-01-01 08:00:00', '2019-01-01 09:00:00',
 '2019-01-01 10:00:00', '2019-01-01 11:00:00',
 '2019-01-01 12:00:00', '2019-01-01 13:00:00',
 '2019-01-01 14:00:00', '2019-01-01 15:00:00',
 '2019-01-01 16:00:00', '2019-01-01 17:00:00',
 '2019-01-01 18:00:00', '2019-01-01 19:00:00',
 '2019-01-01 20:00:00', '2019-01-01 21:00:00',
 '2019-01-01 22:00:00', '2019-01-01 23:00:00'],
 dtype='datetime64[ns]', freq='H')

24) [P] Now, deal with that first column of data. It's currently an object. Use it to form the
index of df_temps to be a DatetimeIndex type. NOTE: You can NOT simply generate this
column using your own date range object! You must generate it directly from the actual
time/date stamp in the data! Why? This is very important. Do NOT ever be fooled into
thinking any real-world dataset you are dealing with is 100% complete. If you simply try to
use a date range between 1/1 – 12/31, with every hour, you are making an incorrect
assumption that every observation is present! WRONG!

25) [P] Confirm that your index is indeed matching your first column of data, then use the
drop method to eliminate the first column of time / date data. It is now your index, and thus
there is no need to keep this information twice.

Date/Time
(GMT)

Number of
Observations

(n/a)

Average
Temp
(F)

Max
Temp
(F)

Min
Temp
(F)

Average
Dewpoint
Temp (F)

1
Hour

Precip
(in)

Max
Wind
Gust
(mph)

Average
Relative

Humidity
(%)

Average
Wind

Speed
(mph)

Average
Station

Pressure
(mb)

Avera
W

Direct
(de

Date/Time
(GMT)

2018-01-01
00�00�00+00�00

2018-01-
01

00�00�00
1.0 10.0 10.0 10.0 -5.1 NaN NaN 49.0 6.9 1028.099976 31

2018-01-01
01�00�00+00�00

2018-01-
01

01�00�00
1.0 8.1 8.1 8.1 -5.1 NaN NaN 54.0 0.0 1028.400024

2018-01-01
02�00�00+00�00

2018-01-
01

02�00�00
1.0 7.0 7.0 7.0 -4.0 NaN NaN 60.0 0.0 1028.800049

2018-01-01
03�00�00+00�00

2018-01-
01

03�00�00
1.0 3.9 3.9 3.9 -5.1 NaN NaN 65.0 3.5 1029.099976 24

2018-01-01
04�00�00+00�00

2018-01-
01

04�00�00
1.0 9.0 9.0 9.0 -2.9 NaN NaN 58.0 9.2 1029.099976 27

2018-01-01
05�00�00+00�00

2018-01-
01

05�00�00
1.0 7.0 7.0 7.0 -4.0 NaN NaN 60.0 6.9 1029.099976 29

2018-01-01
06�00�00+00�00

2018-01-
01

06�00�00
1.0 3.9 3.9 3.9 -4.0 NaN NaN 69.0 3.5 1029.099976 33

2018-01-01
07�00�00+00�00

2018-01-
01

07�00�00
1.0 3.9 3.9 3.9 -4.0 NaN NaN 69.0 5.8 1029.500000 30

2018-01-01
08�00�00+00�00

2018-01-
01

08�00�00
1.0 5.0 5.0 5.0 -2.9 NaN NaN 69.0 10.4 1029.099976 27

2018-01-01
09�00�00+00�00

2018-01-
01

09�00�00
1.0 5.0 5.0 5.0 -4.0 NaN NaN 66.0 9.2 1029.500000 28

26) [P] Give one final report on the % memory reduction made now, compared to when you
first loaded in the data. Again, please take this seriously. This is a substantial amount of
memory saved! Why? Because you took the time to properly process every column to have it
represent its most accurate type, using the smallest type necessary. HUGE savings!

1147476 Mb
Percentage reduced from initial= 82.68876878138151 %

In [22]: #df_temps.index = pd.to_datetime
df_temps.set_index(pd.to_datetime(df_temps['Date/Time (GMT)']).dt.tz_localize("GMT"), inplace = True)

In [23]: #df_temps = df_temps.drop(['Date/Time (GMT)'])
df_temps.head(10)

Out[23]:

In [24]: total4 = df_temps.memory_usage(deep = True).sum()
print(total4, "Mb")
print('Percentage reduced from initial= ', (total-total4)/total*100, '%')

27) [P] As the previous question suggested, this dataset has missing observations! How may
records are missing? Compute this by reporting the number of observations you expect to
see with 24 observations over 365 days, and then report the number of actual observations.
What is the difference? This is the number of observations that are potentially missing!

Observations expected = 8760
Actual observations = 8693
Observations missing = 67

28) [P] Time to investigate. Write code to perform a sanity check on the occurrence of index
entries for every hour of every day between Jan 1, 2018 at midnight, through December 31,
2018, at 23�00. Report the observations that are missing, and any observations that are
duplicate. Report the total quantity of both.

There are 0 duplicate values.
Observations missing: 8760

Congratulations! At this point, you performed your first real-world example of what you need to go through to complete basic

preprocessing steps! Are you done? Bwhahaha! You knew the answer to that already.

29) [P] The next step is to assess missing data in each variable. Use the isna() method on
df_temps to report the total number of entries in each variable that have missing values.

Date/Time (GMT) 0
Number of Observations (n/a) 0
Average Temp (F) 6
Max Temp (F) 6
Min Temp (F) 6
Average Dewpoint Temp (F) 6
1 Hour Precip (in) 6963
Max Wind Gust (mph) 7649
Average Relative Humidity (%) 268
Average Wind Speed (mph) 13
Average Station Pressure (mb) 18
Average Wind Direction (deg) 414
Max Wind Speed (mph) 13
dtype: int64

30) [M] Which variables seem to have the most consistent, complete observations? Which
are missing the most? Are they really "missing", or are they observations where an event did
not occur? Discuss.

It appears that the 'Average Temp', 'Min temp', 'Max temp', 'average Dewpoint temp' average wind speed' 'average station

pressure', and 'average wind speed' are all mostly complete.

1 hour previpitation has a lot of Na results, but the precipitation could have been zero but the data was stored as Na. Average

Wind direction is missing a few obserations as well, but there could have just not been wind for an hour that would make that

variable correctlty show Na.

31) [P] Report the time stamps that have missing temperatures. Do you see a pattern? Do
they happen on a particular day of the week? Or time?

In [25]: print('Observations expected =', 365*24)
print('Actual observations =', df_temps.shape[0])
print('Observations missing =', 365*24 - df_temps.shape[0])

In [26]: start = '2018-01-01 00:00am'
end = '2018-12-31 11:00pm'
lb = pd.date_range(start, end, freq = 'h')
print('There are', df_temps.shape[0] - len(df_temps.index.unique()), 'duplicate values.')
print('Observations missing:', len(lb[~lb.isin(df_temps.index)]))

In [27]: df_temps.isna().sum()

Out[27]:

In [28]: df_temps[(df_temps['Average Temp (F)'].isna())]
2 pairs of them are on the same day, and all
of them occured in the early afternoon. 3 of them were
on Thursday also.

Date/Time
(GMT)

Number of
Observations

(n/a)

Average
Temp
(F)

Max
Temp
(F)

Min
Temp
(F)

Average
Dewpoint
Temp (F)

1
Hour

Precip
(in)

Max Wind
Gust
(mph)

Average
Relative

Humidity
(%)

Average
Wind

Speed
(mph)

Average
Station

Pressure
(mb)

A

Di

Date/Time
(GMT)

2018-03-15
14�00�00+00�00

2018-03-
15

14�00�00
1.0 NaN NaN NaN NaN NaN 17.299999 NaN 11.5 1002.700012

2018-03-15
15�00�00+00�00

2018-03-
15

15�00�00
1.0 NaN NaN NaN NaN NaN 17.299999 NaN 11.5 1002.400024

2018-05-07
14�00�00+00�00

2018-05-
07

14�00�00
1.0 NaN NaN NaN NaN NaN NaN NaN 3.5 1020.000000

2018-09-05
14�00�00+00�00

2018-09-
05

14�00�00
4.0 NaN NaN NaN NaN NaN NaN NaN 0.0 1024.300049

2018-11-29
13�00�00+00�00

2018-11-
29

13�00�00
1.0 NaN NaN NaN NaN NaN 28.799999 NaN 19.6 1016.299988

2018-11-29
14�00�00+00�00

2018-11-
29

14�00�00
1.0 NaN NaN NaN NaN NaN 25.299999 NaN 19.6 1016.900024

32) [P] Create a new categorical variable in df_temps called "Quarter", an ordinal, that is
"Q1" if the month is 1-3, "Q2" if the month is 4-6, "Q3" if the month is 7-9, and "Q4" if the
month is 10-12.

33) [P] Draw a boxplot showing the distribution of the average temperature over the entire
year.

34) [P] Draw a boxplot showing the distribution of the average temperature for each quarter.

Out[28]:

In [29]: def quarters(x):
 #x = pd.Timestamp(x)
 if x.month < 4:
 return 'Q1'
 elif x.month < 7:
 return 'Q2'
 elif x.month < 10:
 return 'Q3'
 else:
 return 'Q4'

df_temps['Quarter'] = df_temps.index.to_series().apply(lambda x: quarters(x))

In [30]: df_temps.boxplot(['Average Temp (F)'],)
plt.title('Average Temperature of 2018')
plt.ylabel('Temperature in degrees F')
plt.show()

In [31]: df_temps.groupby("Quarter").boxplot(column = ["Average Temp (F)"], figsize=(20,20))
plt.show()

35) [P] Plot the average temperature for the entire year. (NOTE: Some plots are very simply
completed using matplotlib. You can still obtain the look and feel of seaborn by using
sns.set_style() first, then plt.plot())

In [32]: sns.set_style('whitegrid')
df_temps["Average Temp (F)"].plot()
plt.title("Average Temperature (2018)")
plt.ylabel("Temperature (F)")
plt.xlabel("Date")
plt.show()

