
Lab 07 - Data preprocessing II

Name: Dempsey Wade

Class: CSCI 349 - Intro to Data Mining

Semester: 2019SP

Instructor: Brian King

1) [P] Create a Python function called process_FAA_hourly_data that takes a filename as a
string, and returns a completely processed pandas data frame, ready for analysis. It should
do everything that the previous lab did to clean the file, including converting all numeric
variables to their simplest numeric types, and converting the date/time stamp (first variable)
to a pandas DatestampIndex, which becomes the actual index for the data frame. It should
drop the date time variable after moving it to become the index.

You completed this functionality in the last lab. (The last lab also had you create a new
categorical variable called "Quarter". Do not include that functionality in this function.) Just
copy over those important statements for processing FAA hourly files to cleaned data
frames.

2) [P] Use your new function to read in the KIPT data file you downloaded in the last lab.
Output the results of info() and describe() to confirm you read it in correctly.

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 8693 entries, 2018-01-01 00:00:00 to 2018-12-31 23:00:00
Data columns (total 12 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 Number of Observations (n/a) 8693 non-null float32
 1 Average Temp (F) 8687 non-null float32
 2 Max Temp (F) 8687 non-null float32
 3 Min Temp (F) 8687 non-null float32
 4 Average Dewpoint Temp (F) 8687 non-null float32
 5 1 Hour Precip (in) 1730 non-null float32
 6 Max Wind Gust (mph) 1044 non-null float32
 7 Average Relative Humidity (%) 8425 non-null float32
 8 Average Wind Speed (mph) 8680 non-null float32
 9 Average Station Pressure (mb) 8675 non-null float32
 10 Average Wind Direction (deg) 8279 non-null float32
 11 Max Wind Speed (mph) 8680 non-null float32
dtypes: float32(12)
memory usage: 475.4 KB

In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os

import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

In [2]: def process_FAA_hourly_data(filename):
 #File path automatically goes into my data folder
 df_temps = pd.DataFrame(pd.read_csv('data/' + filename + '.csv', skiprows = 16))
 del df_temps["Unnamed: 13"]
 df_temps.set_index(['Date/Time (GMT)'], inplace = True)
 df_temps = df_temps.drop('Date/Time (GMT)')
 df_temps.reset_index(level = 0, inplace = True)
 columns = df_temps.columns.drop('Date/Time (GMT)')
 df_temps[columns] = df_temps[columns].apply(pd.to_numeric, errors = 'coerce', downcast = 'float')
 df_temps.set_index(pd.to_datetime(df_temps['Date/Time (GMT)']), inplace = True)
 df_temps = df_temps.drop(['Date/Time (GMT)'], axis = 1)
 return df_temps

In [3]: df_temps = process_FAA_hourly_data('faa_hourly-KIPT_20180101-20181231')
df_temps.info()
df_temps.describe()

Number of
Observations

(n/a)

Average
Temp (F)

Max Temp
(F)

Min Temp
(F)

Average
Dewpoint
Temp (F)

1 Hour
Precip (in)

Max Wind
Gust (mph)

Average
Relative

Humidity
(%)

Average
Wind Speed

(mph)

count 8693.000000 8687.000000 8687.000000 8687.000000 8687.000000 1730.000000 1044.000000 8425.000000 8680.000000 8

mean 1.399747 51.752987 51.847435 51.662914 41.679428 0.040006 23.856617 71.532364 6.033965

std 0.903275 19.336796 19.362728 19.315928 20.122921 0.088109 5.003509 19.806757 5.022885

min 1.000000 -2.900000 -2.900000 -2.900000 -11.000000 0.000000 16.100000 9.000000 0.000000

25% 1.000000 36.000000 36.000000 36.000000 25.000000 0.000000 20.700001 57.000000 1.750000

50% 1.000000 51.099998 51.099998 50.000000 42.099998 0.010000 23.000000 75.000000 5.800000

75% 1.000000 69.099998 69.099998 69.099998 60.099998 0.040000 26.500000 89.000000 9.200000 1

3) [P] Read in the file FAA_PA_stations.csv provided on Moodle. It's not actually a comma
separated file, but a tab separated file. Store the data frame as stations.

4) [P] Examine the data frame (show the first few records). In particular, pay close attention
to the variables Lat and Lon. These represent the precise latitude and longitude geolocation
for the weather station. Then, create a new variable in stations that stores the distance of
every station in PA to Williamsport (KIPT). Use a standard Euclidean distance calculation
(over latitude and longitude) to compute the distance between the stations. As a reminder,
Euclidean distance between two points defined by (x1, y1) and (x2, y2) is:

ID Name County State Lat Lon Elevation (feet)

0 KABE ALLENTOWN LEHIGH PA 40.65 -75.44 376.0

1 KAOO ALTOONA BLAIR PA 40.29 -78.32 1504.0

2 KBVI BEAVER FALLS BEAVER PA 40.77 -80.39 1230.0

3 KBFD BRADFORD MCKEAN PA 41.80 -78.64 2142.0

4 KBTP BUTLER BUTLER PA 40.77 -79.95 1250.0

0 1.593267
1 1.691892
2 3.501685
3 1.808867
4 3.066235
Name: Distance, dtype: float64

5) [P] Output the top 5 stations that are closest to KIPT. (The closest one should be to itself!)
The stations should be listed in order of increasing distance from KIPT.

ID Name County State Lat Lon Elevation (feet) Distance

30 KIPT WILLIAMSPORT LYCOMING PA 41.24 -76.92 520.0 0.000000

27 KSEG SELINSGROVE SNYDER PA 40.82 -76.86 444.0 0.424264

18 KMUI MUIR ARMY AIR FIELD LEBANON PA 40.43 -76.57 489.0 0.882383

28 KUNV UNIVERSITY PARK CENTRE PA 40.85 -77.85 1240.0 1.008464

5 KCXY CAPITAL CITY YORK PA 40.22 -76.85 340.0 1.022399

6) [P] Using your results, go back to the PSU climate website, and download the faa_hourly
data for the same date ranges for the three closest stations to KIPT. Copy them into your
data folder. Then, read in each data file into its own data frame using your function. You
should have four data frames: df_kipt, and three other data frames representing the three
closest stations.

Out[3]:

In [4]: stations = pd.DataFrame(pd.read_csv('data/FAA_PA_stations.csv'))

In [5]: stations.head()

Out[5]:

In [6]: z = stations[stations['ID'] == 'KIPT']

def distance(y, x):
 return (((z['Lat'] - x['Lat'])**2 + (z['Lon'] - x['Lon'])**2)**(1/2))

stations['Distance'] = stations.apply(lambda x: distance(stations, x), axis = 1)

In [7]: stations['Distance'].head(5)

Out[7]:

In [8]: stations.sort_values('Distance', ascending = True).head(5)

Out[8]:

In [9]: df_kipt = process_FAA_hourly_data('faa_hourly-KIPT_20180101-20181231')
df_kseg = process_FAA_hourly_data('faa_hourly-KSEG_20180101-20181231')
df_kunv = process_FAA_hourly_data('faa_hourly-KUNV_20180101-20181231')
df_kmui = process_FAA_hourly_data('faa_hourly-KMUI_20180101-20181231')

7) [P] Create a function called get_missing_timestamps that takes a data frame of FAA
hourly data, and returns a simple Python list of Timestamp objects representing all of the
dates that are missing. (You completed some of this functionality in the previous lab. Now
you are making it a useful function.) The design of the function is up to you. However, a
forward thinking data scientist will make these functions as flexible as possible. (AND, a
good software developer will NOT hardcode values for specific cases!)

67

8) [P] Write the Python code that reports a list of timestamps that are included in each
nearby station that KIPT is missing. (HINT: it will be far, far easier if you consider casting your
list to a set, and using set methods.)

Now, your real task. Some instructor of yours (not mentioning any names) loves complete datasets. He gets freaked out when he

sees missing data. He's also not a fan of noise. Noise be bad!

You're going to repair this data by filling in the best representative data from a nearby station. For the remainder of this exercise,

we will focus on the average temperature attribute (column 1). And, at this point, you should be not only going for the most

efficient code, but you are going to start doing more advanced analyses. So, when your output is not obvious or intuitive, please

write markdown after your output is generated that explains your code, and interprets your results!

9) [P] Since we're going to focus on average temperature, create a new data frame called
df_ave_temps that contains a the average temperature from all four stations. It should have a
COMPLETE hourly date range for its index from the specified start date to finish date (i.e. you
should have 365 * 24 rows.) If the dates are missing from the station you are copying from,
then plug in a NaN value for that entry. Label your variables accordingly. You will use these
data for the remainder of this work.

KIPT KSEG KUNV KMUI

Date/Time (GMT)

2018-01-01 00�00�00 10.0 -0.9 8.60 5.9

2018-01-01 01�00�00 8.1 -2.0 8.60 10.0

2018-01-01 02�00�00 7.0 -4.0 8.60 10.4

2018-01-01 03�00�00 3.9 -2.9 7.27 10.6

2018-01-01 04�00�00 9.0 -2.9 7.03 10.4

10) [P] Report the dates that have missing data for all four stations, if any.

In [10]: def get_missing_timestamps(x, y):
 start = '2018-01-01 00:00am'
 end = '2018-12-31 11:00pm'
 lb = pd.date_range(start, end, freq = 'h')
 missing = lb[~lb.isin(x.index)]
 return missing

kipt_missing = get_missing_timestamps(df_kipt, 'Average Temp (F)')
kseg_missing = get_missing_timestamps(df_kseg, 'Average Temp (F)')
kunv_missing = get_missing_timestamps(df_kunv, 'Average Temp (F)')
kmui_missing = get_missing_timestamps(df_kmui, 'Average Temp (F)')

#I chose to make 'Average Temp (F) a parameter so my function isn't
#hardcoded.

In [11]: print(len(kipt_missing))

In [12]: kipt_missing = set(kipt_missing)
kseg_missing = set(kseg_missing)
kunv_missing = set(kunv_missing)
kmui_missing = set(kmui_missing)

In [13]: start = '2018-01-01 00:00am'
end = '2018-12-31 11:00pm'
lb = pd.date_range(start, end, freq = 'h')

In [14]: df_ave_temps = pd.concat((df_kipt['Average Temp (F)'], df_kseg['Average Temp (F)'], df_kunv['Average Temp (F)
df_ave_temps.columns = ['KIPT', 'KSEG','KUNV','KMUI']
df_ave_temps.head()

Out[14]:

In [15]: df_ave_temps.columns = ["KIPT", "KSEG", "KUNV", "KMUI"]
for column in df_ave_temps:
 missing_temps = get_missing_timestamps(df_ave_temps[column], 'Average Temp (F)')
 for y in missing_temps:
 #print(y)
 df_ave_temps[column].loc[y] = np.nan

In [16]: x = kipt_missing.intersection(kseg_missing)
x = x.intersection(kunv_missing)
x = x.intersection(kmui_missing)
print('There are ', len(x), 'dates missing in all 4 stations')

There are 37 dates missing in all 4 stations

#37 same date missing in all 4 stations.

In [17]: plt.scatter(df_kseg.index, df_kseg["Average Temp (F)"], s = 2)
plt.scatter(df_kipt.index, df_kipt["Average Temp (F)"], c = 'Red', s = 2)
plt.title("Average Temperature of KSEG v. KIPT")
plt.ylabel("Temperature (F)")
plt.xlabel("Date")
plt.show()

In [18]: plt.scatter(df_kunv.index, df_kunv["Average Temp (F)"], s = 2)
plt.scatter(df_kipt.index, df_kipt["Average Temp (F)"], c = 'Red', s = 2)
plt.title("Average Temperature of KUNV v. KIPT")
plt.ylabel("Temperature (F)")
plt.xlabel("Date")
plt.show()

In [19]: plt.scatter(df_kmui.index, df_kmui["Average Temp (F)"], s = 2)
plt.scatter(df_kipt.index, df_kipt["Average Temp (F)"], c = 'Red', s = 2)
plt.title("Average Temperature of KMUI v. KIPT")
plt.ylabel("Temperature (F)")
plt.xlabel("Date")
plt.show()

12) [P] The lines will largely overlap, as one would expect. Select one month of your
choosing, and repeat the previous step for that month.

In [20]: df_kmui_temp = df_kmui[df_kmui.index.month == 1]
df_kipt_temp = df_kipt[df_kipt.index.month == 1]

plt.scatter(df_kmui_temp.index, df_kmui_temp["Average Temp (F)"], s = 2)
plt.scatter(df_kipt_temp.index, df_kipt_temp["Average Temp (F)"], c = 'Red', s = 2)
plt.title("Average Temperature of KMUI v. KIPT")
plt.ylabel("Temperature (F)")
plt.xlabel("Date")
plt.xlim([pd.Timestamp(2018, 1, 1), pd.Timestamp(2018, 2, 1)])
plt.show()

In [21]: df_kseg_temp = df_kseg[df_kseg.index.month == 1]
df_kipt_temp = df_kipt[df_kipt.index.month == 1]

plt.scatter(df_kseg_temp.index, df_kseg_temp["Average Temp (F)"], s = 2)
plt.scatter(df_kipt_temp.index, df_kipt_temp["Average Temp (F)"], c = 'Red', s = 2)
plt.title("Average Temperature of KMUI v. KIPT")
plt.ylabel("Temperature (F)")
plt.xlabel("Date")
plt.xlim([pd.Timestamp(2018, 1, 1), pd.Timestamp(2018, 2, 1)])
plt.show()

13) [P] Report the number of NaN values that are shared between KIPT and each station you
downloaded for average temperature. Remember, be careful how you compare values. Dates
will not be in the same row index due to missing data (i.e. do not just iterate over rows using
integers!) Write the code to generate the answer. Because you are focused on cleaning up
average temperature, this could help you decide which station to use.

64 shared between KIPT and KSEG
48 shared between KIPT and KUNV
47 shared between KIPT and KMUI

14) [P] Perhaps it's more important to select the station that has the most similar values.
Write a function called compare_station that takes two Series objects, and computes the
sum of the absolute value of the difference between each number in the vector. You should
only sum the values that have valid values for both entries. Return the average of these

In [22]: df_kunv_temp = df_kunv[df_kunv.index.month == 1]
df_kipt_temp = df_kipt[df_kipt.index.month == 1]

plt.scatter(df_kunv_temp.index, df_kunv_temp["Average Temp (F)"], s = 2)
plt.scatter(df_kipt_temp.index, df_kipt_temp["Average Temp (F)"], c = 'Red', s = 2)
plt.title("Average Temperature of KMUI v. KIPT")
plt.ylabel("Temperature (F)")
plt.xlabel("Date")
plt.xlim([pd.Timestamp(2018, 1, 1), pd.Timestamp(2018, 2, 1)])
plt.show()

In [23]: kseg_shared = kipt_missing.intersection(kseg_missing)
kunv_shared = kipt_missing.intersection(kunv_missing)
kmui_shared = kipt_missing.intersection(kmui_missing)

print(len(kseg_shared), 'shared between KIPT and KSEG')
print(len(kunv_shared), 'shared between KIPT and KUNV')
print(len(kmui_shared), 'shared between KIPT and KMUI')

absolute differences. Then, call compare_station on KIPT and each of the new station, but
pass only the average temp vector from each station.

1.8825645354992955
2.984193933200105
2.7543632048959488

15) [P] As we learned in class, you could compute a correlation coefficient between columns
of data to determine similarity. Compute the correlation coefficient between the average
temp of KIPT, and each of the other stations you downloaded. They should all be very close
to 1, but not quite. What does this technique suggest which station is most similar?

KIPT 1.000000
KSEG 0.989221
KUNV 0.983036
KMUI 0.982717
Name: KIPT, dtype: float64

16) [M] Important question: Which station seems to be the best representative for KIPT?
Why?

KSEG is most similiar to KIPT, with the highest correlation.

17) [P] Create a new attribute called aveTempFixed in your KIPT data frame that keeps all of
the original average temp data, but takes the readings from the closest station to replace in
the NA values.

18) [P] How many missing values did you fill in?

I filled in 6 missing values

19) [P] Create a new function called moving_ave that takes a Series of numbers and a
window size, and returns a new vector that contains the moving average over the window
size. For example:

moving_ave(pd.Series([5,10,3,7,8,9]),3)

NA, 6, 6.666667, 6, 8, NA NOTE: Your function should center your data over the range, and fill the ends with NA values.

0 NaN
1 6.000000
2 6.666667
3 6.000000
4 8.000000
5 NaN
dtype: float64

20) Use your new function to smooth out your fixed average temp data. Call moving_ave
with a moving average window size of 6, 12, and 24. Show the raw data and your three
smoothed plots on one single plot. Interpret your results.

In [24]: def compare_station(x, y):
 df_temp = pd.concat([x, y], axis = 1)
 df_temp.columns = ['x', 'y']
 dif = df_temp.apply(lambda s: abs(s['x'] - s['y']) if not np.isnan(s['x']) and not np.isnan(s['y']) else
 return dif.mean()

dif_kseg = compare_station(df_ave_temps["KSEG"], df_ave_temps["KIPT"])
dif_kunv = compare_station(df_ave_temps["KUNV"], df_ave_temps["KIPT"])
dif_kmui = compare_station(df_ave_temps["KMUI"], df_ave_temps["KIPT"])
print(dif_kseg)
print(dif_kunv)
print(dif_kmui)

In [25]: df_ave_temps.corr()['KIPT']

Out[25]:

In [26]: df_kipt['aveTempFixed'] = df_kipt["Average Temp (F)"].fillna(df_kmui["Average Temp (F)"])

In [27]: ## 67 missing previously
print("I filled in", df_kipt["Average Temp (F)"].isna().sum()- df_kipt["aveTempFixed"].isna().sum(), "missing
Updated the new value

In [28]: def moving_ave(series, window):
 return series.rolling(window, center = True).mean()

moving_ave(pd.Series([5, 10, 3, 7, 8, 9]), 3)

Out[28]:

In [29]: df_final1 = moving_ave(df_kipt['aveTempFixed'], 6)
plt.scatter(df_kipt.index, df_final1, s = 2, c = 'Red')
#plt.show()
df_final2 = moving_ave(df_kipt['aveTempFixed'], 12)
plt.scatter(df_kipt.index, df_final2, s = 2, c = 'Blue')
#plt.show()
df_final3 = moving_ave(df_kipt['aveTempFixed'], 24)
plt.scatter(df_kipt.index, df_final3, s = 2, c = 'Green')

It was easier to see on 3 seperate graphs, but the green dots are closer together than the red and blue dots. The smoothing

function removes most dramatic vertical spikes in the graph and makes it easier to comprehend.

As you can see in my final graph, all of the green dots (largest window size) are contained inside of the red and blue dots,

because they are more centralized.

plt.title("Average Temperature of KIPT with various window sizes")
plt.ylabel("Temperature (F)")
plt.xlabel("Date")
plt.xlim([pd.Timestamp(2018, 1, 1), pd.Timestamp(2018, 12, 31)])
plt.show()

