
Module 8 - Experimental Design, Causal Research, and Targeting
Analysis

Author: Favio Vázquez and Jessica Cervi

In this assignment we will be focusing on A/B testing.

You will be using data from a marketing campaign conducted in a restaurant that wants to add a new item to its menu. We will

test the effectiveness of three possible marketing campaigns to promote the new item.

The new item was introduced in several randomly selected locations. A different promotion was used in each location, the goal is

to determine which promotion had the greatest effect on sales. The weekly sales of the new item were recorded for the first four

weeks.

Index:

Question 1

Question 2

Question 3

Question 4

Question 5

Question 6

Question 7

Question 8

Question 9

 Import the necessary libraries and read the data

Reading the data # The dataset is stored as usual in a CSV file so we will use pandas "read_csv" function to load it. # Note: don't rename this
dataframe df = pd.read_csv("data/marketing.csv")

MarketID MarketSize LocationID AgeOfStore Promotion week SalesInThousands

0 1 Medium 1 4 3 1 33.73

1 1 Medium 1 4 3 2 35.67

2 1 Medium 1 4 3 3 29.03

3 1 Medium 1 4 3 4 39.25

4 1 Medium 2 5 2 1 27.81

Basic Exploratory Data Analysis

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 548 entries, 0 to 547
Data columns (total 7 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 MarketID 548 non-null int64
 1 MarketSize 548 non-null object
 2 LocationID 548 non-null int64
 3 AgeOfStore 548 non-null int64
 4 Promotion 548 non-null int64
 5 week 548 non-null int64
 6 SalesInThousands 548 non-null float64
dtypes: float64(1), int64(5), object(1)
memory usage: 30.1+ KB

In [1]: # Import libraries
import pandas as pd
import matplotlib.pyplot as plt
from scipy import stats

In [2]: # Reading the data
The dataset is stored as usual in a CSV file so we will use pandas "read_csv" function to load it.
Note: don't rename this dataframe
df = pd.read_csv("/Users/dempseywade/Desktop/gitRepo/DartmouthCodingAssignments/data/Mod8_marketing.csv")

In [3]: # Visualize the first 5 rows of the dataframe
df.head()

Out[3]:

In [4]: #Retrieving information aboout the dataframe
df.info()

In [5]: # Analyzes both numeric and object series
df.describe()

MarketID LocationID AgeOfStore Promotion week SalesInThousands

count 548.000000 548.000000 548.000000 548.000000 548.000000 548.000000

mean 5.715328 479.656934 8.503650 2.029197 2.500000 53.466204

std 2.877001 287.973679 6.638345 0.810729 1.119055 16.755216

min 1.000000 1.000000 1.000000 1.000000 1.000000 17.340000

25% 3.000000 216.000000 4.000000 1.000000 1.750000 42.545000

50% 6.000000 504.000000 7.000000 2.000000 2.500000 50.200000

75% 8.000000 708.000000 12.000000 3.000000 3.250000 60.477500

max 10.000000 920.000000 28.000000 3.000000 4.000000 99.650000

(548, 7)

Return to top

Question 1

Get the sum of the total sales (SalesInThousands) across different promotions. Save your results in a dataframe named ans1.

The resulting dataframe should contain Promotion as index, along with the column SalesInThousands .

Hint: Use use the pandas attribute groupby .

Total sales across promotions:
 SalesInThousands
Promotion
1 9993.03
2 8897.93
3 10408.52

Return to top

Question 2

Compute the counts of different MarketID s for each Promotion group and MarketSize pair. Save your results in a

dataframe called ans2. The final dataframe should contain Promotion and MarketSize as indexes, and the column

MarketID .

Number of market counts for each (Promotion, MarketSize):
 MarketID
Promotion MarketSize
1 Large 56
 Medium 96
 Small 20
2 Large 64
 Medium 108
 Small 16
3 Large 48
 Medium 116
 Small 24

Out[5]:

In [6]: #Retrieving the shape of the dataframe
You should see 548 rows and 7 columns
df.shape

Out[6]:

In [7]: ### GRADED

YOUR SOLUTION HERE
ans1 = df.groupby(by=['Promotion']).sum()
ans1 = ans1.drop(['MarketID', 'LocationID', 'AgeOfStore','week'], axis = 1)

###
YOUR CODE HERE
###
Answer check
print("Total sales across promotions:")
print(ans1)

In [8]: ###
AUTOGRADER TEST - DO NOT REMOVE
###

In [9]: ### GRADED

YOUR SOLUTION HERE
ans2 = df.groupby(by=['Promotion', 'MarketSize']).count()
ans2 = ans2.drop(['LocationID','AgeOfStore','week', 'SalesInThousands'], axis = 1)

###
YOUR CODE HERE
###
Answer check
print("Number of market counts for each (Promotion, MarketSize):")
print(ans2)

Return to top

Question 3

Find the counts of MarketID across all different Promotion groups and AgeOfStore . Save your results in a dataframe
called ans3. The resulting dataframe should have AgeOfStore as index, a MultiIndex column given by Promotion and the

counts of MarketID .

Hint: To create the MultiIndex column, use unstack() on Promotion .

Number of markets given promotion and the age of the store:
 MarketID
Promotion 1 2 3
AgeOfStore
1 24.0 36.0 20.0
2 8.0 8.0 4.0
3 16.0 12.0 4.0
4 16.0 12.0 16.0
5 8.0 12.0 24.0
6 20.0 4.0 12.0
7 4.0 24.0 12.0
8 12.0 8.0 20.0
9 8.0 12.0 8.0
10 NaN 16.0 8.0
11 4.0 NaN 12.0
12 12.0 4.0 8.0
13 12.0 8.0 NaN
14 NaN 8.0 4.0
15 4.0 4.0 NaN
17 NaN NaN 4.0
18 8.0 NaN NaN
19 4.0 8.0 8.0
20 NaN NaN 4.0
22 4.0 NaN 8.0
23 NaN 4.0 4.0
24 4.0 NaN 8.0
25 NaN 4.0 NaN
27 4.0 NaN NaN
28 NaN 4.0 NaN

Understanding the promotions with statistics
Return to top

Question 4

Create a two-sided T-test with the null hypothesis that the sales for Promotion 1 and Promotion 2 have identical expected

average values. Save the obtained t-statistic and the p-value into two variables called t_1 and p_1 , respectively.

For this question, use the scipy module stats.ttest_ind . Set the value of the argument equal_var to False to

perform a Welchʼs t-test that does not assume equal population variance.

You can find more information about the usage of the module stats.ttest_ind here:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html

Hint: Use the SalesInThousands variable for the values.

In [10]: ###
AUTOGRADER TEST - DO NOT REMOVE
###

In [11]: ### GRADED
Expect some NaN values in the dataset

YOUR SOLUTION HERE
ans3 = df.groupby(by=['Promotion', 'AgeOfStore']).count()
ans3 = ans3.drop(['LocationID', 'MarketSize','week', 'SalesInThousands'], axis = 1)

#In the end you have to unstack the promotion
ans3 = ans3.unstack(level = 0)

###
YOUR CODE HERE
###
Answer check
print("Number of markets given promotion and the age of the store:")
print(ans3)

In [12]: ###
AUTOGRADER TEST - DO NOT REMOVE
###

In [13]: ### GRADED

YOUR SOLUTION HERE

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html

Test: sales of Promotions 1 and 2.
 t-statistic: 6.42752867090748
 p-value: 4.2903687179871785e-10

Return to top

Question 5

Create a two-sided T-test with the null hypothesis that the sales for Promotion 1 and Promotion 3 have identical expected

average values. Save the obtained t-statistic and the p-value into two variables called t_2 and p_2 , respectively. Remember
to set equal_var to False .

Test: sales of Promotions 1 and 3.
 t-statistic: 1.5560224307758634
 p-value: 0.12059147742229478

Return to top

Question 6

Create a two-sided T-test with the null hypothesis that the sales for Promotion 2 and Promotion 3 have identical expected

average values. Save the obtained t-statistic and the p-value into two variables called t_3 and p_3 , respectively. Remember
to set equal_var to False .

Test: sales of Promotions 2 and 3.
 t-statistic: -4.88139271089348
 p-value: 1.5692733176039892e-06

Return to top

Question 7

pro1 = df.loc[df['Promotion'] == 1]
pro2 = df.loc[df['Promotion'] == 2]

t_1, p_1 = stats.ttest_ind(pro1['SalesInThousands'], pro2['SalesInThousands'], equal_var = False)

###
YOUR CODE HERE
###
Answer check
print("Test: sales of Promotions 1 and 2.\n t-statistic: {}\n p-value: {}".format(t_1,p_1))

In [14]: ###
AUTOGRADER TEST - DO NOT REMOVE
###

In [15]: ### GRADED

pro1 = df.loc[df['Promotion'] == 1]
pro3 = df.loc[df['Promotion'] == 3]

YOUR SOLUTION HERE
t_2, p_2 = stats.ttest_ind(pro1['SalesInThousands'], pro3['SalesInThousands'], equal_var = False)

###
YOUR CODE HERE
###
Answer check
print("Test: sales of Promotions 1 and 3.\n t-statistic: {}\n p-value: {}".format(t_2,p_2))

In [16]: ###
AUTOGRADER TEST - DO NOT REMOVE
###

In [17]: ### GRADED

pro2 = df.loc[df['Promotion'] == 2]
pro3 = df.loc[df['Promotion'] == 3]

YOUR SOLUTION HERE
t_3, p_3 = stats.ttest_ind(pro2['SalesInThousands'], pro3['SalesInThousands'], equal_var = False)

###
YOUR CODE HERE
###
Answer check
print("Test: sales of Promotions 2 and 3.\n t-statistic: {}\n p-value: {}".format(t_3,p_3))

In [18]: ###
AUTOGRADER TEST - DO NOT REMOVE
###

Which promotion had the biggest sales in average and how much was it? Save your result in a tuple named ans4. The resulting

tuple should have the following structure:

("Promotion #", Average_sale)

Round the value of Average_sale to two decimals digits.

Example:

ans4 = ("Promotion 0", 12.15)

Hint: The first element of the tuple should be a string and the second one a float.

 Promotion
SalesInThousands 1 58.099012
 2 47.329415
 3 55.364468
dtype: float64

Return to top

Question 8

Based on your previous results, can we say that that the marketing performance of promotion group 1 is not statistically different

from the marketing performance of promotion group 3, even though the average number of sales of promotion group 1 is higher

than the average number of sales of promotion group 3?

Assign the booloean value True or False to a variable called ans5.

Return to top

Question 9

Based on your previous results, can we say that promotion 2 significantly increased sales?

Assign the booloean value True or False to a variable called ans6.

In [19]: ### GRADED

YOUR SOLUTION HERE
ans4 = ("Promotion 1", 58.10)
print(df.groupby(['Promotion']).mean()[["SalesInThousands"]].unstack("Promotion"))

###
YOUR CODE HERE
###

In [20]: ###
AUTOGRADER TEST - DO NOT REMOVE
###

In [21]: ### GRADED

YOUR SOLUTION HERE
ans5 = True

###
YOUR CODE HERE
###

In [22]: ###
AUTOGRADER TEST - DO NOT REMOVE
###

In [23]: ### GRADED

YOUR SOLUTION HERE
ans6 = False

###
YOUR CODE HERE
###

In [24]: ###
AUTOGRADER TEST - DO NOT REMOVE
###

